

Training Experiences in Industrial Energy Efficiency

Dr. Peter Therkelsen Lawrence Berkeley National Laboratory

29 March 2017

UNFCCC Thematic Dialogue on Industrial Energy Efficiency Bonn, Germany

CURRENT SITUATION: IDENTIFIED INDUSTRIAL ENERGY EFFICIENCY MEASURES ARE NOT BEING IMPLEMENTED

Peter I herkelsen, Almee McKane, Energy Policy, Volume 57, June 2013, Pages 318N328 n = 606 recommended industrial

BARRIERS TO IMPLEMENTATION OF IDENTIFIED INDUSTRIAL ENERGY EFFICIENCY MEASURES

- Internal restrictions
- Lack of analysis

Behavioral (19%)

Facility/Production (25%)

- Process/equipment change
- Operating changes
- Facility change

51% of barriers are organizational, behavioral, or facility/production related

Economic (41%)

Capital outlay

Cash flow

Unsuitable ROI

Peter Therkelsen, Aimee McKane, Energy Policy, Volume 57, June 2013, Pages 318N328 n = 606 recommended industrial steam system energy efficiency measures

ORGANIZATIONAL STRUCTURE WITHIN A INDUSTRIAL FACILITY

Top Management

Maximize Shareholder Value

Stay in Business

Energy = Sunk Cost

Energy,
Environmental,
Health, and
Safety
Managers

Meet Production Demands

Avoid Violations

Lower Energy Prices

Production Managers and Staff

Produce Product

ISO 50001 - FRAMEWORK FOR BUSINESS PRACTICE TO MANAGE ENERGY

Top Management

Energy,
Environmental,
Health, and
Safety
Managers

Production Managers and Staff

Facility/Production
Behavioral
Organizational
Economic

Energy Engineering

LIMITATIONS IN CURRENT ISO 50001 AUDITOR QUALIFICATIONS

- The market is experiencing similar challenges with ISO 50001 auditing:
 - Some credential providers simultaneously function as the training organization, so auditors are trained to pass the exam.
 - Variable quality of auditors
 - Negative feedback from industry on audit quality:
- Market confidence in ISO 50001 and energy efficiency benefits is contingent on robust certification audits.
- Many certification auditors lack the technical & analytical skills to support these outcomes.

EPI 50001 LEAD AUDITOR – INSTITUTE FOR ENERGY MANAGEMENT PROFESSIONALS

The EPI credential...

- Increases market value of ISO 50001 by:
 - Ensuring consistent quality implementation
 - Increasing the impact of continual energy performance improvement
 - Broadening public policy recognition and acceptance
- Addresses the widespread variability in the skills and qualifications of ISO 50001 auditing personnel
- Reduces the burden on personnel certification bodies to prove the competence of their auditors
- Enables personnel certification bodies to attain ISO/IEC 17024 accreditation using a single scheme and comparable exams

No other ISO 50001 auditor credential combines the two fields of specialized expertise required for effective ISO 50001 auditing:

- Management system auditing, e.g., ISO 9001, ISO 14001
- 2. Energy efficiency and performance

Most professionals have expertise in one field, but they need both.

THANK YOU!

Dr. Peter Therkelsen Lawrence Berkeley National Laboratory

ptherkelsen@lbl.gov

+1 510 486 5645

